close

標題:

求等比數列首9項之和?

發問:

第5項是:開方2。首9項之積和第九項相等,求首9項之和。 求過程,謝謝

最佳解答:

設首項為 a,公比為 r。 T(5) = √2 ar? = √2 ...... [1] T(1) × T(2) × T(3) × ....... × T(8) × T(9) = T(9) T(1) × T(2) × T(3) × ....... × T(8) = 1 a × ar × ar2 × ...... × ar? = 1 a?r2? = 1 ...... [2] [1]? : a?r32 = 16 ...... [3] [3]/[2] : r? = 16 r = ±2 代入 [1] 中: a(±2)? = √2 a = (√2)/16 當 r = 2 : 首 9 項之和 S(9) = a(r? - 1)/(r - 1) = [(√2)/16] × (2? - 1) / (2 - 1) = 511(√2)/16 當 r = -2 : 首 9 項之和 S(9) = a[r? - 1)/(r - 1) = [(√2)/16] × [(-2)? - 1] / [(-2) - 1] = 513(√2)/48 = 171(√2)/16

其他解答:

此文章來自奇摩知識+如有不便請留言告知

設首項為 a,公比為 r。 T(5) = √2 ar? = √2 ...... [1] T(1) × T(2) × T(3) × ....... × T(8) × T(9) = T(9) T(1) × T(2) × T(3) × ....... × T(8) = 1 a × ar × ar2 × ...... × ar? = 1 a?r2? = 1 ...... [2] [1]? : a?r32 = 16 ...... [3] [3]/[2] : r? = 16 r = ±2 代入 [1] 中: a(±2)? = √2 a = (√2)/16 當 r = 2 : 首 9 項之和 S(9) = a(r? - 1)/(r - 1) = [(√2)/16] × (2? - 1) / (2 - 1) = 511(√2)/16 當 r = -2 : 首 9 項之和 S(9) = a[r? - 1)/(r - 1) = [(√2)/16] × [(-2)? - 1] / [(-2) - 1] = 513(√2)/48 = 171(√2)/16|||||由題 有一等比數列 a5=2^(1/2), a1*a2*...*a9=a9 => (2^(1/2))^9(=根號2的九次方 因為a1*a9=a2*a8=a5*a5 所以前九項的積 可用a5表示)=a9=a5*(r^4))=(2^(1/2))*(r^4) (r為公比), 所以(2^(1/2))^9=(2^(1/2))*(r^4)=>(2^(1/2))^8=(r^4)=2^4, 因此r=2 or -2, 這裡討論正的情況 負的依此類推 只是代入而已 所以此數列前九項為 (2^(1/2))/16, (2^(1/2))/8, (2^(1/2))/4, (2^(1/2))/2, (2^(1/2)), (2^(1/2))*2, (2^(1/2))*4, (2^(1/2))*8, (2^(1/2))*16 加起來就是=31*(2^(1/2))+15(2^(1/2))/165AEEC82B53E1B405

arrow
arrow
    創作者介紹
    創作者 vbt157z 的頭像
    vbt157z

    飛航模式

    vbt157z 發表在 痞客邦 留言(0) 人氣()