close

此文章來自奇摩知識+如有不便請留言告知



標題:

英文統計學mean standard deviation

發問:

可以幫下我嗎?2.A factory produces steel rods that are used to reinforce concrete. The production process is known to produce rods that are normally distributed with a mean length of 300 cm and a standard deviation of 8 cm.(a) One rod is randomly selected for quality checking. i.What is the probability that... 顯示更多 可以幫下我嗎? 2.A factory produces steel rods that are used to reinforce concrete. The production process is known to produce rods that are normally distributed with a mean length of 300 cm and a standard deviation of 8 cm. (a) One rod is randomly selected for quality checking. i.What is the probability that a randomly selected rod has a length longer than 315 cm? ii.If 22% of the rods are more than a specific length L, find L. (a)14 rods are randomly selected for quality checking. i.What are the mean and standard deviation of the sample mean length? ii.What is the probability that the sample mean length will be between 297 cm and 305 cm? iii.If 22% of the sample means are more than a specific length L, find L. 請列式=="

最佳解答:

(a) i P( X > 315 ) = P( Z > (315-300)/8 ) = P( Z > 1.875 ) 查標準常態分配機率表得 P( Z > 1.87 ) = 0.0307 , P( Z > 1.88 ) = 0.0301 故 P( Z > 1.875 ) = (0.0307+0.0301) / 2 = 0.0304 Ans: 0.0304 ii 0.22 = P( X > L ) = P( Z > (L-300)/8 ) 查表得P( Z > 0.77 ) = 0.22 故 0.77 = (L-300)/8 L = 300+8*0.77 = 306.16 (cm) Ans: L = 306.16 cm (a) 14 rods ...... 應該改成 (b)14 rods ...... (b) i μ of X-bar = μ = 300 σof X-bar = σ / √n = 8/√14≒ 2.138 Ans: The mean of the sample mean length = 300 cm The standard deviation of the sample mean length = 2.138 cm ii P( 297 L ) = P( Z > (L-300)/2.138 ) 查表得P( Z > 0.77 ) = 0.22 故 0.77 = (L-300)/2.138 L = 300+2.138*0.77 ≒301.65 (cm) Ans: L = 301.65 cm 註解 : 題目(b)沒說群體數大小,但鋼棒是用來強化混凝土的結構, 顯然使用數量會超過樣本數的10倍以上,可視為無限群體. 故計算x-bar的標準誤時,不用修正係數(或是說修正係數為1)

其他解答:

還是要去 http://aaashops。com 品質不錯,老婆很喜歡。 倖史亖乕吳俕労B5117735D6B60D95

arrow
arrow
    創作者介紹
    創作者 vbt157z 的頭像
    vbt157z

    飛航模式

    vbt157z 發表在 痞客邦 留言(0) 人氣()